

Convex Polygon - All the interior angles must be less than 180 degrees.

95% No extented side will pass through the interior of the polygon.

Concave Polygon - An interior angle can be more than 180 degrees. If a side is extented then the side will pass through the interior of the polygon.

Regular Polygon - All sides are congruent and all angles are congruent.
It is equilateral and equiangular.

Name a polygon by the number of sides.

Number of Sides	Name of Polygon	
3	Triungle	
4	Quadrilateral	
5	Pentuson	
6	Hexagon	
7	Septuson Heptuson	
8	Octugun	
9	Nonagon	
10	Decagon	
11	11-50n	
12	doderngon	

13 13-gon n-gon

Polygon	Triangle	Quadrilateral	Pentagon	Hexagon	Heptagon	Octagon	
# Sides	>	4	5	6	7	8	×
# of diagonals		',		7	Lı		
from a vertex	0	(2	>	٦	5	
# of Triangles	ļ	a	3	4	5	6	
Sum of the		360	540	720	900	1080	₽
Interior Angles	180	360	370	120	,,,,	1000	77

Polygon Interior Angle-Sum Theorem

The sum of the measures of the interior angles of a convex n-gon is $180 \cdot (n-2)$.

Measure of Each Interior Angle of a Regular Polygon.

The measure of an interior angle of a regular n-gon is $\frac{180 \cdot (n-2)}{n}$.

Find the sum of the interior angles for each polygon.

n=9 5=180(9-2) 180(7) 5=1260

A regular 18-gon

Find the value of x

X + 130 + 132 + 130 + 130 + 128 + 138 = 900 X + 788 = 900X = 112

×+112+155+90+98+190 =700 (×+595 = 720 ×=125°

X+ 150+140+120+150+125+150+160=1080 X+ 975= 1080

X = 105

= 1080

180 = x+38+34 /80 = x +72 X=108 Find the value of and the measure of each interior angle.

$$(3x - 20)^{\circ}$$

$$4x^{\circ}$$

$$(3x - 20)^{\circ}$$

$$(3x - 20)^{\circ}$$

$$(3x - 20)^{\circ}$$

What are the measures of the interior angles of the pentagon shown?

 $(3x + 4)^{\circ} \qquad (7x - 3)^{\circ}$ $(6x + 12)^{\circ}$ $(3x + 4)^{\circ} \qquad (6x + 12)^{\circ}$ $(6x - 3)^{\circ}$

SOLUTION

$$540 = 3x + 4 + 7x - 3 + 6x + 12 + 6x - 3 + 90$$

$$22 \times + 100 = 540$$

$$22 \times = 440$$

$$X = 20$$

Find the measure of each interior angle for each regular polygon.

a regular 16-gon